
 
 
 

Vol. 52, 2025 
ISSN: 2223-4861 
_______________________________________________________________________________________________________ 
 

_____________________________________________________________________________________ 
Este es un artículo de acceso abierto bajo una Licencia Creative Commons Atribución-No Comercial 4.0 
Internacional, lo que permite copiar, distribuir, exhibir y representar la obra y hacer obras derivadas para 
fines no comerciales.____________________________________________________________________ 
 
* Autor para la correspondencia: Gabriela Corsano, Email: gcorsano@santafe-conicet.gob.ar  
 
 

e1116 

Una Publicación de la Editorial Feijóo, UCLV 
 

Disponible en: 
http://centroazucar.uclv.edu.cu 

 
http://scielo.sld.cu/scielo.php?script=sci_serial&pid=222

3-4861&lng=es&nrm=iso 

Article Original 

AN OPTIMIZATION MODEL FOR CANE TRANSPORTATION IN 

THE ARGENTINE SUGAR INDUSTRY  

 

UN MODELO DE OPTIMIZACIÓN PARA EL TRANSPORTE DE CAÑA EN LA 

INDUSTRIA AZUCARERA ARGENTINA 

 
Gabriela Corsano1* https://orcid.org/0000-0002-0235-4262   
Luciana Melchiori1 https://orcid.org/0000-0003-1993-4113   

____________________________________________________________ 
1 Instituto de Desarrollo y Diseño, CONICET-UTN, Santa Fe, Argentina. 

 
Recibido: Abril 24, 2025; Revisado: Mayo 15, 2025; Aceptado: Junio 2, 2025 

 ______________________________________________________________________ 

ABSTRACT 

Introduction:  
Over the past decade, significant industrial and academic efforts focused on improving 
sugarcane harvesting, transportation, and sugar production have been carried out. While 
most studies focus on decision-making at a strategic and tactical level, the operational 
level remains less explored. This work develops a tool for daily sugarcane transportation 
planning within the Argentine industry. 
Objective: 
To generate a daily transportation schedule considering in-field loading and mill 
unloading activities, aiming to optimize transportation costs and synchronize truck 
arrivals. 
Materials and Methods:  
Sugarcane harvest scheduling involves cane cutting, loading in the field, transport, and 
mill unloading. These tasks greatly influence supply chain costs and production efficiency 
due to cane deterioration. To address this, we propose an Integer Linear Programming 
model that simultaneously assigns harvest fields, routes trucks, and schedules both 
loading and unloading operations.  
Results and Discussion:  
Two case studies assess the model: a small-scale instance for detailed result analysis and 
an industrial-scale example to demonstrate the model's scalability and effectiveness.  
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Conclusions:  
The proposed model provides a comprehensive plan for sugarcane harvest and transport, 
supporting efficient operational decisions in the sugar industry. 
 
Keywords: combinatorial optimization; mathematical programming; routing; 
scheduling; sugarcane. 
 
RESUMEN 

Introducción: 
En la última década, se han realizado importantes esfuerzos industriales y académicos 
enfocados en mejorar la cosecha, el transporte de caña de azúcar y la producción de 
azúcar. Mientras que la mayoría de los estudios se centran en la toma de decisiones a 
nivel estratégico y táctico, el nivel operativo ha sido menos explorado. Este trabajo 
desarrolla una herramienta para la planificación diaria del transporte de caña en el 
contexto de la industria argentina. 
Objetivo: 
Generar una programación diaria del transporte considerando las actividades de carga en 
el campo y descarga en el ingenio, con el objetivo de optimizar los costos de transporte y 
sincronizar los arribos de los camiones. 
Materiales y Métodos: 
La programación de la cosecha de caña implica el corte, la carga en el campo, el transporte 
y la descarga en el ingenio. Estas tareas impactan significativamente en los costos de la 
cadena de suministro y en la eficiencia del proceso productivo, debido al deterioro de la 
caña. Para abordar estas cuestiones, se propone un modelo de Programación Lineal Entera 
que asigna simultáneamente los campos a cosechar, las rutas de los camiones y los 
horarios de carga y descarga. 
Resultados y Discusión: 
Se presentan dos estudios de caso para evaluar el modelo: uno de pequeña escala, que 
permite analizar resultados detalladamente, y otro de escala industrial, para demostrar su 
escalabilidad y efectividad. 
Conclusiones: 
El modelo propuesto ofrece un plan integral para la cosecha y el transporte de caña de 
azúcar, sirviendo como una herramienta eficiente para la toma de decisiones operativas 
en la industria azucarera. 
 
Palabras clave: optimización combinatoria; programación matemática; ruteo; 
programación; caña de azúcar. 
 
1. INTRODUCTION 

The diversification in the sugar industry, especially biofuels production and electricity 
generation in past decade, has increased the interest in improving both the economy and 
the efficiency of the sugarcane supply chain (SC). Consequently, this sector needs 
technical and scientific support. Particular attention was focused on the modernization of 
harvesting activities, in the production process, and logistics, since these activities 
strongly impact in the overall performance of the SC (Kaup, 2015). Mathematical 
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programming and optimization have been extensively used for guiding decision-making 
in sugarcane SC with the objective of improving its management. The list of published 
works in this topic is large, and most approaches have directed their studies towards 
decision-making at the strategic and tactical levels (Kostin et al., 2012; Gilani & Sahebi, 
2021; Florentino et al., 2022; Lima et al., 2023), with the operational level receiving less 
attention. Recently, dos Santos et al. (2023) presented a review work about sugarcane SC 
optimization models, covering papers about planting, harvesting, transporting, industrial 
processing, and marketing decisions for the different decision levels: strategic, tactical 
and operational. They emphasize the importance of mathematical modeling and 
optimization to build planning tools and conclude that most approaches addressed 
harvesting optimization at the strategic and tactical level, while only few works were 
identified considering integration of the activities from harvesting to milling at the 
operational level. They also highlight that, given the perishable characteristics of the 
sugarcane, simultaneous decisions at operational level must be directed. 
In this work, the Daily Sugarcane Transportation Planning (DSTP) problem is addressed 
at the operational decision level, aiming to effectively meet product demand while 
efficiently managing short-term decisions. This problem is also referred to in the literature 
as harvest scheduling (Le Gal et al., 2008). Specifically, given a set of fields to be 
harvested-each with known sugarcane availability-and the existing harvesting machinery, 
as well as a fleet of trucks stationed at the sugar mill for cane transportation and a known 
sugarcane demand at the mill, the problem involves assigning trucks to fields to collect 
the cane harvested by each machine, determining the route each truck takes during the 
day, synchronizing harvesting with truck loading, and coordinating truck arrivals at the 
mill. Thus, allocation, routing, and scheduling are addressed simultaneously in the 
context of the Argentine sugarcane supply chain. It is worth noting that the assumptions 
and decisions in sugarcane supply chain models may vary depending on the specific 
characteristics of each application context (Higgins et al., 2007).  
Sugarcane degradation occurs when delays between the different stages are long. For this 
reason, detailed operational planning is essential and necessary. Also, scheduling 
consideration must be taken into account to coordinate the use of resources at the fields 
(harvesters and truck loading) and at the mill (truck arrivals and unloading) to avoid 
overlapping and idle time. López-Milán et al. (2006) presented a mixed integer linear 
programming (MILP) model that jointly solves the sugarcane harvesting and 
transportation at operational level. They consider two means of transportation (railway 
and road) and two types of harvesting (manual and mechanized). They divide the daily 
time horizon into one-hour periods to indicate when harvesting and transportation occur 
throughout the day. This assumption has two drawbacks: an increase in the number of 
binary variables in the proposed MILP model, and a simplification of the real case due to 
the use of one-hour time periods. In a later work, López-Milán & Plà-Aragonès, (2014) 
proposed a Decision Support System (DSS) to efficiently solve the same problem, 
resulting in significant fuel cost savings when the DSS was applied to a real-life scenario. 
A more realistic approach incorporates uncertainty in sugarcane yield at harvesting stage. 
This was addressed by Morales et al. (2020), who proposed a multi-objective stochastic 
optimization model for harvest, maintenance, transport and workforce scheduling, 
considering economic, environmental and social objectives. 
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Building on previous insights, this work proposes an Integer Linear Programming model 
that realistically schedules sugarcane supply operations—harvest planning, truck routing, 
and timing—using detailed time slots. The model minimizes transport costs while 
accounting for machinery and vehicle characteristics, and solves complex, simultaneous 
decisions efficiently within practical computational times. 
 
2. MATERIALS AND METHODS 

This section introduces the Daily Sugarcane Transportation Problem (DSTP). Given a set 
of sugarcane fields p, p ∈ P, each with a maximum availability Op (in full-truckloads, 

FTL) and a time window ൣW୨
ି, W୨

ା൧, the goal is to select suppliers, route trucks v ∈ V, 

and schedule arrivals to meet the mill’s demand D (in FTL) at minimum cost. 
The transportation network includes the fields and the mill 𝑚, where all trucks start and 
end. The homogeneous fleet has identical capacity and is based at the mill. Travel times 
𝑇௜,௝ are defined for all 𝑖, 𝑗 ∈ 𝑃 ∪ {𝑚}, along with service resources 𝑅௝ per location, which 

represent harvesters in fields and unloaders at the mill.  
𝑇௣

௅ represents the time required for the harvesting machinery to harvest and load a truck 

and it depends on the harvester technology, while 𝑇௎ denotes unloading time. Trucks 

may wait if no resource is available, with maximum allowed waiting time, 𝑇௝
ௐ, Routes 

include departure trips from the mill, loaded trips to the mill, and repositioning trips. 

Trucks are limited by daily working time 𝐿௧௜௠௘ and number of trips, 𝐿௧௥௜௣௦. The objective 

function includes fixed truck costs 𝐶௩
௙ and variable trip costs 𝐶௜,௝, which depend on 

distances, truck load condition, and road characteristics. Figure 1 outlines the DSTP. The 
model determines: 

 The sugarcane fields that supply the mill. 

 The routing decisions, i.e., the sequence of trips to be performed by each truck. 

 The scheduling of trucks arrivals in each sugarcane field and the mill. 
 

 

Figure 1. Proposed sugarcane SC and parameter definitions   
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2.1. Proposed approach 
For the harvesting scheduling, a slot-based formulation is proposed, discretizing the time 
windows of each harvest site and the mill in shifts. The methodology used for 
synchronizing the activities of harvesting, loading, transporting, and unloading sugarcane 
is thoroughly explained in the following subsections.  
 
2.2. Time discretization  
Each field and the mill have their time windows discretized into service shifts, based on 
available loading or unloading resources. To minimize the number of shifts while 
ensuring feasibility, adjusted time intervals are defined for each location, considering 
distances and the daily nature of harvesting and transport planning. For 𝑝 ∈ 𝑃, the 

feasibility interval ൣ𝐹௣
ି, 𝐹௣

ା൧ is considered, where initial and final values are calculated as  

𝐹௣
ି = max൛𝑊௣

ି, 𝑊௠
ି + 𝑇௠,௣ൟ (1) 

and 

𝐹௣
ା = min൛𝑊௣

ା, 𝑊௠
ା − 𝑇௎ − 𝑇௣,௠ൟ (2) 

For the mill, the feasibility interval [𝐹௠
ି, 𝐹௠

ା]  is considered, and its endpoints are 
calculated as  

𝐹௠
ି = min

௣
൛𝐹௣

ି + 𝑇௣
௅ + 𝑇௣,௠ൟ (3) 

and 

𝐹௠
ା = min ൜𝑊௠

ା, max
௣

൛𝐹௣
ା + 𝑇௣,௠ൟ + 𝑇௠

ௐ + 𝑇௎ൠ (4) 

Thus, for each field 𝑝, the time interval ൣ 𝐹௣
ି, 𝐹௣

ା൧ is partitioned into උ(𝐹௣
ା − 𝐹௣

ି)/𝑇௣
௅ඏ shifts 

of length 𝑇௣
௅, where ⌊∙⌋ indicates the floor function. Let 𝐼௣ be the set of these shifts. 

Analogously, the time interval [𝐹௠
ି, 𝐹௠

ା]  for the mill is partitioned into ⌊(𝐹௠
ା − 𝐹௠

ି)/𝑇௎⌋ 
shifts of length 𝑇௎. Let 𝐿 be the set of these shifts. For each shift s, with 𝑠 ∈ 𝐼௣ ∪ 𝐿, 

𝑆௦ denotes the start time of 𝑠 and 𝐸௦ indicate the end time of 𝑠. 
In Figure 2, the construction of feasible intervals and the corresponding shifts for an 
example with a field, is illustrated. Part (a) displays the shifts for the field, while part (b) 
shows the shifts obtained for the mill.  
 
2.3. Successive pairs of shifts   
Based on the chronology, including travel and maximum waiting times, it is evident that 
not every pair of shifts can be used successively. For this reason, subsets of 𝐼௣ × 𝐿 and 

𝐿 × 𝐼௣ are defined below. These relations between pair of shifts reduce the number of 

decision variables improving its performance. 
 
2.3.1. Trips from the field to the mill 
Given 𝑝 ∈ 𝑃, let Δ௣ be the set of all pairs of shifts (𝑖, 𝑙) with 𝑖 ∈ 𝐼௣ and 𝑙 ∈ 𝐿 such that 𝑙 

is allowed to be used after shift 𝑖. Then, (𝑖, 𝑙) ∈ Δ௣ if it fulfills the following conditions:  

o The shift 𝑙 begins after the ending time of shift 𝑖 plus the traveling time from 𝑝 to the 
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mill, i.e., 
𝐸௜ + 𝑇௣,௠ ≤ 𝑆௟ (5) 

o If shift 𝑙 is used after shift 𝑖, then the maximum waiting time allowed in the mill is not 
exceeded, i.e.,  

𝑆௟ ≤ 𝐸௜ + 𝑇௣,௠ + 𝑇௠
ௐ (6) 

 

Figure 2. Definition of feasible time intervals 

 

 
Figure 3. Relations between consecutive shifts in trips from the field to the mill 
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2.3.2 Trips from the mill to the field 
Given 𝑝 ∈ 𝑃, let Π௣ be the set of every pair of shifts (𝑙, 𝑖) with 𝑙 ∈ 𝐿 and 𝑖 ∈ 𝐼௣ such that 

𝑖 is allowed to be used after shift 𝑙. Then, (𝑙, 𝑖) ∈ Π௣ if the following conditions are 

fulfilled: 
o The starting time of shift 𝑖 is later than the ending time of shift 𝑙 plus the traveling time 
between the mill and 𝑝, i.e.,  

𝐸௟ + 𝑇௠,௣ ≤ 𝑆௜ (7) 

 
The starting time of shift 𝑖 must be earlier than the ending time of shift 𝑙 plus the traveling 
time between the mill and 𝑝, plus the maximum allowed waiting time at 𝑝, i.e.,  

𝑆௜ ≤ 𝐸௟ + 𝑇௠,௣ + 𝑇௣
ௐ.   (8) 

Figure 4 shows an example of allowed and not allowed consecutive shifts for trips from 
the mill to field.  

 
Figure 4. Relations between consecutive shifts in trips from the mill to the field 

 
2.4.  Mathematical Programming Model 
Only trips associated with successive pairs of shifts for in-field harvesting/loading and 
unloading the cane, or for unloading and harvesting/loading, are considered. That is, pairs 
of shifts included in the sets described in Subsection 3.2. Accordingly, the following 
binary variables are defined: 

 For each 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃, and 𝑖 ∈ 𝐼௣, the corresponding variable 𝑥௩,௣,௜ takes the 

value 1 if the truck 𝑣 departs in its first trip from the mill to the field 𝑝 for in-
field harvesting and loading sugarcane during shift 𝑖. 

 For each 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃, and (𝑖, 𝑙) ∈ Δ௣, the corresponding variable 𝑥௩,௣,௜,௟ takes 

the value 1 if the truck 𝑣 leaves the field 𝑝 at the end of shift 𝑖 to be unloaded at 
the mill during shift 𝑙.  

 For each 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃, and (𝑙, 𝑖) ∈ Π௣, the corresponding variable 𝑥௩,௟,௣,௜ takes 

the value 1 if the truck 𝑣 leaves the mill at the end of shift 𝑙 to the field 𝑝 to be 
loaded during shift 𝑖.   

An additional variable is defined to represent the end of every route: 

 For each 𝑣 ∈ 𝑉 and 𝑙 ∈ 𝐿, the corresponding variable 𝑥௩,௟ takes the value 1 if the 

truck 𝑣 finishes this route at the end of shift 𝑙. 
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2.4.1. Objective function 
The overall transportation cost 𝐶௧௢௧௔௟  to be minimized is calculated as follows: 

𝐶௧௢௧௔௟ = ෍ ෍ ෍൫𝐶௩
௙

+ 𝐶௠,௣൯𝑥௩,௣,௜

௜∈ூ೛௣∈௉௩∈௏

+ ෍ ෍ ෍ 𝐶௣,௠𝑥௩,௣,௜,௟

(௜,௟)∈୼೛௣∈௉௩∈௏

+ ෍ ෍ ෍ 𝐶௠,௣𝑥௩,௟,௣,௜

(௟,௜)∈ஈ೛௣∈௉௩∈௏

. 

 
(9) 

The objective function includes costs for truck trips: fixed and variable costs for 
departures from the mill to fields, loaded trips back to the mill, and unloaded repositioning 
trips from the mill to fields. 
 
2.4.2. Constraints 
The constraints related to the supply and demand of sugarcane correspond to (10) and 
(11). Equation (10) guarantees that the total loaded movements arriving at the mill must 
fulfill its demand. Constraint (11) states that for every sugarcane field, the total loaded 
movements performed from this place to the mill cannot exceed the availability of 
sugarcane at that location. 

෍ ෍ ෍ 𝑥௩,௣,௜,௟

(௜,௟)∈୼೛௣∈௉௩∈௏

= 𝐷 (10) 

෍ ෍ 𝑥௩,௣,௜,௟

(௜,௟)∈୼೛௩∈௏

≤ 𝑂௣, ∀𝑝 ∈ 𝑃. (11) 

Constraint (12) guarantees that each truck has at most one route. Constraint (13) ensures 
that if a truck performs a route, then it must finish it. Constraints (14) and (15) are the 
flow conservation constraints per shift.  

෍ ෍ 𝑥௩,௣,௜

௜∈ூ೛௣∈௉

≤ 1,          ∀ 𝑣 ∈ 𝑉. (12) 

෍ ෍ 𝑥௩,௣,௜

௜∈ூ೛௣∈௉

= ෍ 𝑥௩,௟

௟∈௅

,          ∀𝑣 ∈ 𝑉. (13) 

𝑥௩,௣,௜ + ෍ 𝑥௩,௟,௣,௜

௟:(௟,௜)∈ஈ೛

= ෍ 𝑥௩,௣,௜,௟

௟:(௜,௟)∈୼೛

, ∀𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼௣. (14) 

෍ ෍ 𝑥௩,௣,௜,௟

௜:(௜,௟)∈୼೛௣∈௉

= ෍ ෍ 𝑥௩,௟,௣,௜

௜:(௟,௜)∈ஈ೛௣∈௉

+ 𝑥௩,௟ , ∀𝑣 ∈ 𝑉, 𝑙 ∈ 𝐿. (15) 

Constraints (16) and (17) impose that at most 𝑅௝ trucks attend each shift of the fields and 

the mill, for 𝑗 ∈ 𝑃 ∪ {𝑚}, respectively. 

෍ 𝑥௩,௣,௜

௩∈௏

+ ෍ ෍ 𝑥௩,௟,௣,௜

௟:(௟,௜)∈ஈ೛௩∈௏

≤ 𝑅௣, ∀𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼௣. (16) 

෍ ෍ ෍ 𝑥௩,௣,௜,௟

௜:(௜,௟)∈୼೛௣∈௉௩∈௏

≤ 𝑅௠,          ∀𝑙 ∈ 𝐿. (17) 

Considering that there is a maximum working time 𝐿௧௜௠௘ that sets an upper bound for the 
duration of a route, the set 𝜑௣,௜ is defined to associate the start and end shifts of the route 

such that its duration does not exceed that time. Specifically, given 𝑝 ∈ 𝑃 and 𝑖 ∈ 𝐼௣, let 

𝜑௣,௜ be the set of all 𝑙 ∈ 𝐿 such that a truck’s route, which departs from the mill and 
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attends shift 𝑖 of 𝑝 after its first trip, can end in shift 𝑙 without exceeding 𝐿௧௜௠௘. Since the 

duration of a route is calculated as 𝐸௟ − ൫𝑆௜ − 𝑇௠,௣ ൯, the set 𝜑௣,௜ is defined as  

𝜑௣,௜ = ൛𝑙: 𝑙 ∈ 𝐿 𝑎𝑛𝑑 𝐸௟ − ൫𝑆௜ − 𝑇௠,௣൯ ≤ 𝐿௧௜௠௘ൟ. 

Constraint (18) states that if a truck attends shift 𝑖 of 𝑝 after its first trip, it cannot attend 
shift 𝑙 of the mill before its last trip if 𝑙 ∉ 𝜑௣,௜: 

෍ 𝑥௩,௟

௟∉ఝ೛,೔

≤ 1 − 𝑥௩,௣,௜,    ∀𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼௣. (18) 

Eq. (19) states that trucks cannot perform more than 𝐿௧௥௜௣௦ trips, setting an upper bound 
on the number of trips per vehicle from the mill to the fields. 

෍ ෍ 𝑥௩,௟,௣,௜

(௟,௜)∈ஈ೛௣∈௉

≤ ቞
𝐿௧௥௜௣௦ − 2

2
቟,          ∀𝑣 ∈ 𝑉. 

(19) 

 
2.4.3. Valid inequalities 
To strengthen the model formulation and improve computational efficiency, existence 
constraints and symmetric breaking constraints are considered:  
Constraint (20) ensures that the truck that leaves the mill makes trips from fields to the 
mill.  

෍ ෍ 𝑥௩,௣,௜

௜∈ூ೛௣∈௉

≤ ෍ ෍ 𝑥௩,௣,௜,௟

(௜,௟)∈୼೛௣∈௉

, ∀𝑣 ∈ 𝑉. (20) 

Constraints (19) can be rewritten to impose an upper bound on the number of trips per 
vehicle from fields to the mill as follows: 

෍ ෍ 𝑥௩,௣,௜,௟

(௜,௟)∈୼೛௣∈௉

≤ ቜ
𝐿௧௥௜௣௦ − 2

2
ቝ ,          ∀𝑣 ∈ 𝑉 

(21) 

where ⌈. ⌉ indicates the ceil function. This condition can be tightened by introducing an 
additional factor to the right-hand side (RHS) of the constraint, which accounts for 
whether the truck leaves the mill. The modified constraint is as follows: 

෍ ෍ 𝑥௩,௣,௜,௟

(௜,௟)∈୼೛௣∈௉

≤ ቜ
𝐿௧௥௜௣௦ − 2

2
ቝ ෍ ෍ 𝑥௩,௣,௜

௜∈ூ೛௣∈௉

 ,          ∀𝑣 ∈ 𝑉. 
(22) 

As all vehicles have equal fixed costs, symmetries are avoided with the constraint (23): 

෍ ෍ 𝑥௩೙శభ,௣,௜

௜∈ூ೛௣∈௉

≤ ෍ ෍ 𝑥௩೙,௣,௜

௜∈ூ೛௣∈௉

 ,          ∀1 ≤ 𝑛 ≤ |𝑉| − 1. (23) 

 
2.5. Case Studies 
Two test cases based on the Argentine context are used to evaluate the model, which is 
implemented in GAMS and solved with CPLEX. A 900-second CPU time limit is set, 
considering the model’s use as a daily scheduling tool. 
For both examples, the trucks fixed cost is equal to $650, while the costs related to 
travelled distance of loaded and unloaded trucks are $25 and $15 per km, respectively. It 
is assumed that the routes have similar characteristics. The loaded truck speed is 55 km 
per hour, and the unloaded truck speed is 65 km per hour. Additionally, each truck driver 

has a maximum working time 𝐿௧௜௠௘ = 8 hours and each truck can make at most 𝐿௧௥௜௣௦ = 
8 trips. 
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3. RESULTS AND DISCUSION  

3.1. Example I 
The first example considers five fields (p₁–p₅) and 19 trucks (v₁–v₁₉) to deliver 72 FTL in 
one day. Table 1 shows FTL availability, distances to the mill, time windows, and 
harvesting/loading times. Waiting times are limited to 40 minutes in fields and 20 at the 
mill, which uses two 10-minute unloading resources. Feasible intervals and shifts appear 
in Table 2. The model includes 14,877 binary variables and 6,429 constraints, reaching 
optimality in 640.19 CPU seconds at a cost of $43,030. Table 3 shows truck routes and 
shifts; and Figure 5 presents the Gantt chart. 

 

Table 1. Details of sugarcane fields for Example I: supply, distance to the mill, time window, 
and harvesting-loading time of resources 

 𝑶𝒑 (FTL) 𝑫𝒑 (km) 𝑾𝒑
ି (h) 𝑾𝒑

ା (h) 𝑻𝒑
𝑳  (min) 

𝑝ଵ 16 15 6:00 20:00 50 

𝑝ଶ 16 6 6:00 20:00 50 

𝑝ଷ 10 20 0:00 24:00 50 

𝑝ସ 17 8 0:00 24:00 80 

𝑝ହ 17 10 0:00 24:00 80 
 

Table 2. Feasible generated shift in Example I 

 𝑭𝒑
ି(h) 𝑭𝒑

ା (h) ห𝑰𝒑ห 𝑭𝒎
ି  (h) 𝑭𝒎

ା  (h) |𝑳| 

𝑝ଵ 06:00 20:00 16 - - - 

𝑝ଶ 06:00 20:00 16 - - - 

𝑝ଷ 00:18 23:10 27 - - - 

𝑝ସ 00:07 23:16 17 - - - 

𝑝ହ 00:09 23:05 17 - - - 

𝑚 - - - 01:30 24:00 134 
 

Table 3.  Trucks routes descriptions for the optimal solution of Example I 
Truck Assigned route Routing time (h) 

𝑣ଵ 𝑚 − 𝑝ଶ, 𝑖଼ − 𝑚, 𝑙଺ଽ − 𝑝ହ, 𝑖ଵଵ − 𝑚, 𝑙଼ଷ − 𝑝ଶ, 𝑖ଵଷ −  𝑚, 𝑙ଽସ − 𝑝ସ, 𝑖ଵସ −  𝑚, 𝑙ଵ଴଻ 7:36 

𝑣ଶ 𝑚 − 𝑝ସ, 𝑖ସ − 𝑚, 𝑙ଶ଻ − 𝑝ଵ, 𝑖ଶ − 𝑚, 𝑙ସ଴ − 𝑝ଵ, 𝑖ସ −  𝑚, 𝑙ହ଴ − 𝑝ଵ, 𝑖଺ −  𝑚, 𝑙଺଴ 7:30 
𝑣ଷ 𝑚 − 𝑝ସ, 𝑖଺ − 𝑚, 𝑙ସଷ − 𝑝ଵ, 𝑖ହ − 𝑚, 𝑙ହହ − 𝑝ଵ, 𝑖଻ −  𝑚, 𝑙଺ହ − 𝑝ଷ, 𝑖ଵ଺ −  𝑚, 𝑙଻଻ 7:40 
𝑣ସ 𝑚 − 𝑝ହ, 𝑖ଵଶ − 𝑚, 𝑙ଽ଴ − 𝑝ଵ, 𝑖ଵସ − 𝑚, 𝑙ଵ଴ଵ − 𝑝ସ, 𝑖ଵହ −  𝑚, 𝑙ଵଵହ − 𝑝ଷ, 𝑖ଶ଺ −  𝑚, 𝑙ଵଶ଺ 7:50 
𝑣ହ 𝑚 − 𝑝ହ, 𝑖଼ − 𝑚, 𝑙ହଽ − 𝑝ଷ, 𝑖ଵହ − 𝑚, 𝑙଻ଵ − 𝑝ଶ, 𝑖ଵ଴ −  𝑚, 𝑙଼଴ − 𝑝ଶ, 𝑖ଵଶ −  𝑚, 𝑙଼ଽ 7:00 
𝑣଺ 𝑚 − 𝑝ଶ, 𝑖ଶ − 𝑚, 𝑙ସ଴ − 𝑝ଶ, 𝑖ସ − 𝑚, 𝑙ହ଴ − 𝑝ଶ, 𝑖଺ −  𝑚, 𝑙଺଴ − 𝑝ହ, 𝑖ଵ଴ −  𝑚, 𝑙଻ସ 7:06 
𝑣଻ 𝑚 − 𝑝ସ, 𝑖ଶ − 𝑚, 𝑙ଵଵ − 𝑝ହ, 𝑖ସ − 𝑚, 𝑙ଶ଺ − 𝑝ଶ, 𝑖ଵ −  𝑚, 𝑙ଷସ − 𝑝ଵ, 𝑖ଷ −  𝑚, 𝑙ସହ 7:40 
𝑣଼ 𝑚 − 𝑝ଶ, 𝑖ଷ − 𝑚, 𝑙ସହ − 𝑝ସ, 𝑖଼ − 𝑚, 𝑙ହଽ − 𝑝ସ, 𝑖ଵ଴ −  𝑚, 𝑙଻ହ − 𝑝ଶ, 𝑖ଵଵ −  𝑚, 𝑙଼ସ 7:55 
𝑣ଽ 𝑚 − 𝑝ହ, 𝑖଺ − 𝑚, 𝑙ସଷ − 𝑝ଶ, 𝑖ହ − 𝑚, 𝑙ହହ − 𝑝ଶ, 𝑖଻ −  𝑚, 𝑙଺ହ − 𝑝ଵ, 𝑖ଽ −  𝑚, 𝑙଻଺ 7:30 
𝑣ଵ଴ 𝑚 − 𝑝ଵ, 𝑖଼ − 𝑚, 𝑙଻଴ − 𝑝ଵ, 𝑖ଵ଴ − 𝑚, 𝑙଼଴ − 𝑝ଵ, 𝑖ଵଶ −  𝑚, 𝑙ଽଵ − 𝑝ହ, 𝑖ଵସ −  𝑚, 𝑙ଵ଴଻ 7:44 
𝑣ଵଵ 𝑚 − 𝑝ହ, 𝑖ଶ − 𝑚, 𝑙ଵ଴ − 𝑝ଷ, 𝑖ହ − 𝑚, 𝑙ଶଷ − 𝑝ଵ, 𝑖ଵ −  𝑚, 𝑙ଷହ − 𝑝ଷ, 𝑖ଵ଴ −  𝑚, 𝑙ସ଺ 7:52 
𝑣ଵଶ 𝑚 − 𝑝ସ, 𝑖ଵ − 𝑚, 𝑙ଷ − 𝑝ସ, 𝑖ଷ − 𝑚, 𝑙ଵଽ − 𝑝ସ, 𝑖ହ −  𝑚, 𝑙ଷସ 7:10 
𝑣ଵଷ 𝑚 − 𝑝ସ, 𝑖ଵଶ − 𝑚, 𝑙ଽ଴ − 𝑝ଶ, 𝑖ଵସ − 𝑚, 𝑙ଵ଴଴ − 𝑝ଵ, 𝑖ଵ଺ −  𝑚, 𝑙ଵଵ଴ − 𝑝ହ, 𝑖ଵ଺ −  𝑚, 𝑙ଵଶଷ 7:20 
𝑣ଵସ 𝑚 − 𝑝ଵ, 𝑖ଵଷ − 𝑚, 𝑙ଽହ − 𝑝ଶ, 𝑖ଵହ − 𝑚, 𝑙ଵ଴ହ − 𝑝ଷ, 𝑖ଶସ −  𝑚, 𝑙ଵଵ଺ − 𝑝ହ, 𝑖ଵ଻ −  𝑚, 𝑙ଵଷ଴ 7:24 
𝑣ଵହ 𝑚 − 𝑝ଵ, 𝑖ଵଵ − 𝑚, 𝑙଼଺ − 𝑝ସ, 𝑖ଵଷ − 𝑚, 𝑙ଽଽ − 𝑝ଶ, 𝑖ଵ଺ −  𝑚, 𝑙ଵଵ଴ − 𝑝ସ, 𝑖ଵ଺ −  𝑚, 𝑙ଵଶଶ 7:44 
𝑣ଵ଺ 𝑚 − 𝑝ସ, 𝑖଻ − 𝑚, 𝑙ହଵ − 𝑝ହ, 𝑖ଽ − 𝑚, 𝑙଺଺ − 𝑝ଶ, 𝑖ଽ −  𝑚, 𝑙଻ହ − 𝑝ଷ, 𝑖ଵ଼ −  𝑚, 𝑙଼଺ 7:50 
𝑣ଵ଻ 𝑚 − 𝑝ହ, 𝑖ଵ − 𝑚, 𝑙ଷ − 𝑝ହ, 𝑖ଷ − 𝑚, 𝑙ଵଽ − 𝑝ହ, 𝑖ହ −  𝑚, 𝑙ଷହ 7:20 
𝑣ଵ଼ 𝑚 − 𝑝ହ, 𝑖ଵଷ − 𝑚, 𝑙ଽଽ − 𝑝ହ, 𝑖ଵହ − 𝑚, 𝑙ଵଵହ − 𝑝ସ, 𝑖ଵ଻ −  𝑚, 𝑙ଵଷଵ 7:20 
𝑣ଵଷ 𝑚 − 𝑝ସ, 𝑖ଵଶ − 𝑚, 𝑙ଽ଴ − 𝑝ଶ, 𝑖ଵସ − 𝑚, 𝑙ଵ଴଴ − 𝑝ଵ, 𝑖ଵ଺ −  𝑚, 𝑙ଵଵ଴ − 𝑝ହ, 𝑖ଵ଺ −  𝑚, 𝑙ଵଶଷ 7:20 
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The model provides detailed information for each truck. For instance, Figure 6 shows the 

scheduling for truck v10, starting at the mill and arriving at field 𝑝ଵ during shift shift 𝑖଼
௉భ . 

After loading, it travels to the mill and waits from shift 𝑙଺ଽ to 𝑙଻଴ to unload. It then returns 

to field 𝑝ଵ, arriving at shift 𝑖ଽ
௣భ but waiting until 𝑖ଵ଴

௣భ to load. This pattern repeats for 

additional shifts, including visits to 𝑝ଵ and later  𝑝ହ, with multiple waiting periods due to 
shift overlaps and resource unavailability. The entire tour lasts 7 hours 44 minutes, 
including 1 hour 23 minutes of waiting. 
 

 
Figure 5. Gantt-chart for the optimal solution of Example I 

 

 
Figure 6. Example of a daily truck route obtained in Example I 

 
The proposed model enables detailed daily planning by selecting fields, scheduling 
harvest and loading times, and routing each truck with precise arrival, waiting, and idle 
times. It also outputs resource utilization, travel distances, and times, ensuring efficient 
coordination of harvesting, transport, and unloading operations. 
 
3.2. Example II 
In this example, the truck fleet includes 90 vehicles. On the selected working day, 27 
harvest areas (p1–p27) supply the mill with a total of 240 FTL. Table 4 presents the FTL 
availability per field, field-to-mill distances, operational time windows (in hours from day 
start), and the number of loading resources Rp per site. The harvesting and loading 
operation requires 80 minutes per task. Based on field distances, Table 4 also includes the 

feasible truck arrival intervals ൣ𝐹௣
ି, 𝐹௣

ା൧ and the number of shifts per location. The mill 

remains open all day, with four unloading resources (10 minutes per operation). This 
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results in a feasible mill interval of [01:30, 24:00] and 134 generated shifts. The allowed 
waiting times are 50 minutes at fields and 20 minutes at the mill. 
This case includes 266,400 binary variables and 80,446 equations. Using the initialization 
from Melchiori et al. (2023), a feasible solution with 8.66% gap was found in 100 CPU 
seconds. The optimal solution was reached in 612.09 seconds, requiring 83 trucks at a 
cost of $148,911.60. The average travel time was 6h52 (incl. waiting). Table 5 shows 
FTL deliveries per field. As before, the model provides detailed and efficient planning. 
As was mentioned for the previous example, the detailed harvesting, routing and 
scheduling plan is obtained through the proposed approach. Moreover, the efficiency of 
the model solution allows testing different scenarios for a given set of model parameters 
in few CPU seconds. 

   

Table 4. Fields characteristics in Example II: supply, distance to the mill, time window, 
number of resources, feasible time interval, and number of shifts 

 𝑶𝒑 (FTL) 𝑫𝒑 (km) 𝑾𝒑
ି (h) 

 

𝑾𝒑
ା (h) 

 
𝑹𝒑 𝑭𝒑

ି (h) 𝑭𝒑
ା (h) ห𝑰𝒑ห 

𝑝ଵ 20 14.75 0:00 24:00 2 00:13 23:33 17 

𝑝ଶ 20 13.75 0:00 24:00 2 00:12 23:35 17 

𝑝ଷ 20 18.83 0:00 24:00 2 00:17 23:29 17 

𝑝ସ 20 19.55 0:00 24:00 2 00:18 23:28 17 

𝑝ହ 20 14.20 0:00 24:00 2 00:13 23:34 17 

𝑝଺ 20 11.11 0:00 24:00 2 00:10 23:37 17 

𝑝଻ 20 20.50 0:00 24:00 2 00:18 23:27 17 

𝑝଼ 20 8.70 0:00 24:00 2 00:08 23:40 17 

𝑝ଽ 20 7.10 0:00 24:00 2 00:06 23:42 17 

𝑝ଵ଴ 20 9.50 0:00 24:00 2 00:08 23:39 17 

𝑝ଵଵ 20 7.90 0:00 24:00 2 00:07 23:41 17 

𝑝ଵଶ 20 6.50 0:00 24:00 2 00:06 23:42 17 

𝑝ଵଷ 20 10.80 0:00 24:00 2 00:09 23:38 17 

𝑝ଵସ 6 10.07 10:00 18:00 1 10:00 18:00 6 

𝑝ଵହ 20 5.35 0:00 24:00 2 00:04 23:44 17 

𝑝ଵ଺ 17 17.83 0:00 24:00 2 00:16 23:30 17 

𝑝ଵ଻ 1 4.31 8:00 12:00 1 08:00 12:00 3 

𝑝ଵ଼ 2 8.10 10:00 18:00 1 10:00 18:00 6 

𝑝ଵଽ 9 16.70 6:00 20:00 1 06:00 20:00 10 

𝑝ଶ଴ 13 12.78 0:00 24:00 2 00:11 23:36 17 

𝑝ଶଵ 5 11.80 10:00 22:00 1 10:00 22:00 9 

𝑝ଶଶ 7 3.30 10:00 24:00 1 10:00 23:46 10 

𝑝ଶଷ 3 15.25 10:00 18:00 1 10:00 18:00 6 

𝑝ଶସ 7 20.00 10:00 22:00 1 10:00 22:00 9 

𝑝ଶହ 15 12.00 0:00 24:00 2 00:11 23:36 17 

𝑝ଶ଺ 6 13.15 10:00 22:00 1 10:00 22:00 9 

𝑝ଶ଻ 20 21.00 0:00 24:00 2 00:19 23:27 17 

 
Table 5. Sugarcane supplied by each field in the planning day 

 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 
m 4 3 3 2 4 19 2 20 20 20 20 20 20 5 
 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 - 

m 20 2 1 2 3 13 4 7 2 1 15 5 3 - 
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4. CONCLUSIONS 

This work presents an ILP model for integrated field selection, in-field harvesting, truck 
routing and scheduling, and synchronization of field and mill resources. It is tailored to 
the Argentine context, where harvesting and loading occur simultaneously at the 
sugarcane fields. The model supports strategic decision-making in daily operations, with 
the aim of improving both cost efficiency and product quality. 
Case Study 1 demonstrates the model’s capacity to provide optimal, highly detailed 
scheduling and routing plans within reasonable computation times, illustrating its utility 
for small to mid-scale operations. Case Study 2 shows the model’s scalability and how 
initialization algorithms can enable the solution of large, complex instances, relevant for 
real industrial applications. 
Overall, the approach proves to be a powerful planning tool, adaptable to different 
scenarios and robust under varying operational constraints, making it valuable for 
enhancing logistics performance in the sugarcane industry. 
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