

http://scielo.sld.cu/scielo.php?script=sci_serial&pid=222 3-4861&Ing=es&nrm=iso

Article Original

KINETIC CHARACTERIZATION OF BIOMETHANE MESOPHILIC AND THERMOPHILIC PRODUCTION FROM ANAEROBIC DIGESTION OF FILTER CAKE AND VINASSE

CARACTERIZACIÓN CINÉTICA DE LA PRODUCCIÓN MESOFÍLICA Y TERMOFÍLICA DE BIOMETANO POR DIGESTIÓN ANAERÓBICA DE CACHAZA Y VINAZA

Carlos Loyo-Inclán¹ https://orcid.org/0009-0008-2608-5387
Anilú Miranda-Medina^{1*} https://orcid.org/0000-0002-1647-2585
Sheila Paulina Parra-Bartolo¹ https://orcid.org/0009-0002-1759-0521
Dulce María Barradas-Dermitz¹ https://orcid.org/0000-0002-1594-1773
Marisol Bravo-Figarola¹ https://orcid.org/0009-0002-8492-5782
Patricia Margaret Hayward-Jones¹ https://orcid.org/0000-0002-7999-2326

¹Academic Body of Science and Engineering in projects on Health, Environment and Energy with a Humanist approach CISAEH; Biochemical and Chemical Engineering Department; National Technological Institute of Mexico-Veracruz Institute of Technology, Veracruz, Ver. Mexico.

Recibido: Julio 3, 2025; Revisado: Julio 25, 2025; Aceptado: Agosto 4, 2025

ABSTRACT

Introduction:

As part of the path toward a sugarcane biorefinery scheme, it is necessary to study the utilization of byproducts such as sugarcane filter cake and vinasse, particularly as energy sources through their anaerobic conversion to biomethane.

Objective:

To generate a kinetic characterization of this conversion.

Materials and Methods:

A sample from a slaughterhouse wastewater treatment plant was used as the inoculum and substrates were samples of vinasse and filter cake, cultured in mesophilic and thermophilic ranges, useful for scaling-up.

Results and Discussion:

Mesophilic conditions, with vinasse as a substrate, produced a higher amount of accumulated biomethane (1466.7 NmL) compared to the vinasse and filter cake mixture

9

Este es un artículo de acceso abierto bajo una Licencia *Creative Commons* Atribución-No Comercial 4.0 Internacional, lo que permite copiar, distribuir, exhibir y representar la obra y hacer obras derivadas para fines no comerciales.

^{*} Autor para la correspondencia: Anilu Miranda-Medina, Email: ani_mm77@yahoo.com

(832.8 NmL) using an I/S of 1 (g VS/g VS). Anaerobic digestion in the thermophilic range decreased biomethane production by 67.71% (vinasse) and 91.34% (filter cakevinasse) under identical operating conditions. Biomethane production was reported at 90% on the second day.

Conclusions:

Under mesophilic conditions, biomethane production increased by an average of 79.52%. A higher Biomethane Potential (BMP) was achieved using only vinasse as a substrate. Of the ten kinetic models evaluated, the Hill equation is flexible for high and low biomethane production; however, it only generates one kinetic parameter. The Gompertz equation is recommended because it showed an R^2 greater than 0.99 for high production and three kinetic parameters. The Avrami and modified Avrami equations are suitable for low biomethane production.

Keywords: biomethane; filter cake; kinetic model; vinasse.

RESUMEN

Introducción:

Como parte de la vía hacia un esquema de biorrefinería de caña de azúcar, es necesario estudiar el aprovechamiento de subproductos como la cachaza y la vinaza, particularmente como fuentes de energía mediante su conversión anaeróbica a biometano.

Objetivo:

Generar una caracterización cinética de esta conversión.

Materiales y Métodos:

Muestra de planta de tratamiento de aguas residuales de rastro como inóculo. Sustratos: muestras de vinaza y cachaza, cultivo en rango mesófilo y termófilo, lo cual es útil para su escalamiento.

Resultados y discusión:

Las condiciones mesófilas, con vinaza como sustrato, produjeron una mayor cantidad de biometano acumulado (1466,7 NmL) en comparación con la mezcla de vinaza y cachaza (832,8 NmL) utilizando una I/S de 1 (g VS/g VS). La digestión anaeróbica en el rango termófilo disminuyó 67,71% (vinaza) y 91,34% (cachaza-vinaza) en la producción de biometano, bajo condiciones de operación idénticas. Se reporta la producción del 90 % de biometano al segundo día.

Conclusiones:

Bajo condiciones mesofílicas la producción de biometano se incrementó 79,52% en promedio. Se alcanzó un mayor BMP utilizando únicamente vinaza como sustrato. De los diez modelos cinéticos evaluados, la ecuación de Hill presenta flexibilidad para producciones altas y bajas de biometano, sin embargo, solo genera un parámetro cinético. La ecuación de Gompertz se recomienda por haber presentado un R² mayor a 0,99 para altas producciones y tres parámetros cinéticos. Avrami y Avrami modificado son adecuadas para bajas producciones de biometano.

Palabras clave: biometano; cachaza; modelo cinético; vinaza.

1. INTRODUCTION

Research studies on the use of two of the main byproducts (filter cake and vinasse) of a complete sugarcane biorefinery scheme have been made in order to attain knowledge about the different paths (El Bari & Habchi, 2024; Montiel et al., 2022; Tena et al., 2022; Nadaleti & Lourenço, 2021; Rodriguez et al., 2018; Parsaee et al., 2019; Janke et al., 2016; Yono et al., 2014). The investigation into the use of these byproducts is also linked to an endeavor to avoid their pollution impact. The natural biodegradation of organic material through the four steps of anaerobic digestion producing biogas (CH₄, CO₂, H₂S) is the basis for the later use of biomethane as an energy source. The basic engineering design of a plant for biomethane production from any organic material needs kinetic reaction information, among other data. Therefore, in this study that information has been obtained. The filter cake and vinasse were collected from a factory in Veracruz, the main Mexican producer state of sugarcane derivatives. Automated anaerobic bioreactors were used in the experimental part. Considering that a sigmoidal response is linked to biomethane production through anaerobic digestion promoted by microorganisms, ten equations related to this type of response were chosen to evaluate their proximity to the experimental results.

2. MATERIALS AND METHODS

2.1 Inoculum and substrate

The digested sludge used as the substrate was obtained from the abattoir wastewater treatment plant from Medellín Slaughterhouse located in Medellín, Veracruz, México. The filter cake and vinasse used as substrates were collected from the Modelo sugar mill in Cardel, Veracruz, México and La Gloria sugar mill in Úrsulo Galván, Veracruz, Mexico, respectively. The digested sludge and filter cake were stored at room temperature, while vinasse was maintained at 4 °C, prior to the experiments.

2.2 Method of characterization

Five parameter determinations were based on gravimetric methods: % w/w Total Solids (TS); % w/w Moisture; % w/w Ash; % w/w Volatile Solids, dry weight (VS DW); % w/w Volatile Solids, wet weight (VS WW), according to the equations based on APHA (2005).

2.3 Mixture selection

A 27-73% proportion of filter cake-vinasse (VS basis) was selected, due of what was reported by López et al. (2017), where there was an increase of 10.86% in biomethane production for this proportion.

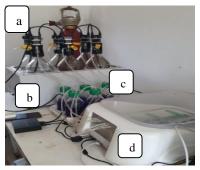
2.4 I/S selection

To deduce the S/I or I/S ratio to work with, it is considered that for easily biodegradable substrates, where the rapid accumulation of fermentation intermediate products such as VFA (volatile fatty acids) can inhibit anaerobic digestion, inoculum volume should be greater than that of the substrate or an S/I less than or equal to 0.5 should be applied, (for example, S/I of 0.5 or 0.25), to minimize the possibility of acidification or inhibition problems, or apply an I/S \geq 4.

For substrates that have a high content of organic substances that are not easily biodegradable, an S/I greater than 0.5 or I/S \leq 1 should be applied (Holliger et al., 2016; Filer et al., 2019).

According to Raposo et al. (2006), occupying an I/S ratio with values close to 1 can be toxic for microorganisms. However, Moset et al. (2015) report that the optimal I/S ratio varies depending on the substrate occupied, for example, the ideal I/S range for wheat and whole corn is 0.5-2.5 and 1-1.5 respectively.

Subsequent to the line of research by Filer et al. (2019), where they state that different S/I or I/S ratios should be tested for each substrate to find its ideal range, in this study we worked with the I/S ratio of 1 g VS/g VS (López et al., 2017; Marin et al., 2016; Caillet et al., 2019; Moset, et al., 2015).


2.5 Temperature range

According to the literature Yadvika et al., (2004); Gebreeyessus & Jenicek, (2016), temperature is one of the factors that has the greatest effect on the biogas production process. This can be carried out at three different temperature ranges: psychrophilic, below 25 °C; mesophilic, from 25 °C to 40 °C; thermophilic, from 50 °C to 70 °C (Campos & Flotats, 2004), most activity being in the mesophilic and thermophilic temperature ranges (Desair & Madamwar, 1994).

In order to evaluate the influence of temperature on biomethane production, the optimal values reported in literature (37 °C and 52.5 °C) were studied (Angelidaki & Ahring, 1994; Kardos et al., 2011; Pandey & Soupir, 2012).

2.6 Anaerobic bioreactors

The experiments for the anaerobic digestion were carried out in an automated system, AMPTS II Light (BPC or Bioprocess Control AB, Lund, Sweden), which comprises three units (figure 1).

Figure 1. AMPTS II Light system. (a) Anaerobic bioreactors with regulable agitation (b) Thermostatic water bath (c) Absorption Unit of CO₂ and H₂S (d) Gas Volume Measuring Device

The incubation unit comprised six bioreactors, four of them containing the substrate-inoculum mixture and two of them blanks. The total capacity of each bioreactor was 2 L, filled with 1 L of the mixture or were left blank. The agitation applied was 20 seconds per minute at 40 rpm (López et al., 2017).

Before starting the run, the pH of the content in each bioreactor was adjusted to 7 using 1 M HCl or 1M NaOH solutions. With an operating volume of 10 L of water, the Grant Sub Aqua Pro US 12 L thermostatic water bath was utilized to regulate the temperature.

The incubation temperature was for experiments A and C 37 °C (mesophilic range) and for experiments B and C 52.5 °C, corresponding to a thermophilic range. The bioreactors were flushed with nitrogen by a flow of 2.5-10 L/min through a ARMCO RO-841 high pressure regulator for 120 s to make the anaerobic condition.

The gas volume device measures the biomethane generated. It works "according to the principle of liquid displacement and buoyancy. An integrated embedded data acquisition system is used to record, display and analyze the results" (AMPTS II light manual). Based on these measurements, normalized gas production was calculated (0 °C, 1 atm and dry gas).

2.7 Biomethane production and Biochemical Methane Potential (BMP) test

As mentioned above, the experiments of anaerobic digestion were carried out in an automated system, AMPTS II Light (BPC or Bioprocess Control AB, Lund, Sweden) considering the conditions for 4 experiments. Inoculum for A and B was I1 and for C and D I2, both inocula were from the same abattoir wastewater treatment plant but sampled at different times; substrate for A and C was vinasse and for B and D $V_{73\%}$ - $F_{27\%}$; I/S = 1; T 37 °C for A and B, 52.5 °C for C and D; operational volume 1 L; agitation 20 s per minute at 40 rpm; initial pH 7.

Results of the experiments are expressed as NmL, in this case, accumulative biomethane. Another expression is NmL CH₄ g⁻¹ VS, known as Biochemical Methane Potential (BMP).

2.8 Preparation of bioreactors

Equations 1 and 2 were used in order to determine the amount of substrate and inoculum to be added, maintaining the I/S ratio constant. The term m_{tot} is the total amount in the bioreactor (corresponding to 1000 g); m_{ss} is the amount of substrate (g); m_{IS} is the amount of inoculum (g); α is the I/S ratio; VS_s are the volatile solids of the substrate on a wet basis and VS_I are the volatile solids of the inoculum on a wet basis.

$$m_{SS} + m_{IS} = m_{tot} \tag{1}$$

$$\frac{m_{IS}VS_I}{m_{SS}VS_S} = \alpha \tag{2}$$

Solving mss from Eq. 1 and replacing it in Eq. 2 gives Eq 3. Simplifying Eq. 3, the amount of inoculum to be supplied to the bioreactor is shown in Eq 4. Having calculated m_{IS} , the amount of substrate is obtained from Eq.1.

$$\frac{m_{IS}Vs_I}{(m_{tot} - m_{IS})Vs_S} = \alpha \tag{3}$$

$$m_{IS} = \frac{\alpha V S_S m_{tot}}{V S_I + \alpha V S_S} \tag{4}$$

It should be noted, in the case where the mixture is of two components like substrate (V₇₃-F₂₁), that for the calculation of VSs, Eq. 5 is used, where VSsV are vinasse volatile solids on a wet basis, VSsF are filter cake volatile solids on a wet basis, β is the filter cake fraction in the substrate and γ , the fraction of vinasse in the substrate.

$$VS_S = \beta V_{SF} + \gamma V_{SV}$$
(51)

2.9 Kinetic study. Sigmoidal models

As biomethane is a product of bacterial metabolism involved in anaerobic digestion, sigmoidal functions (Zwietering, et al., 1990) can describe the kinetics of cumulative biomethane production. In Table 1 the equations and the kinetic parameters of the ten models that were estimated using the Solver function in MS-Excel for these kinetic studies are shown.

Table 1. Kinetic models

Model	Equation		Citation	
First order	$Y(t) = Y_{max}(e^{-kt} - 1)$	(6)	Caillet et al., 2019	
Hill equation	$Y(t) = Y_{max} \frac{t^b}{Km^b + t^b}$	López et al., 2017		
Modified Gompertz	$Y(t) = Y_{max} e^{-e^{\left[\left(\mu_{max} * \frac{e}{Y_{max}} * (\lambda - t)\right) + 1\right]}}$	(8)		
Modified Richards	$Y(t) = \frac{Y_{max}}{\left\{1 + ve^{1+v} * e^{\left[\frac{\mu_{max}}{Y_{max}}(1+v)\left(1+\frac{1}{v}\right)(\lambda-t)\right]\right\}^{\frac{1}{v}}}$	(9)	Zwietering et al., 1990	
Modified Schnute	$Y(t) = \left(\mu_{max} \frac{1-b}{a}\right) \left[\frac{1-be^{(a\lambda+1-b-at)}}{1-b}\right]^{\frac{1}{b}}$ $a = \frac{\mu_{max}e}{Y_{max}}$ $Y(t) = \frac{Y_{max}}{Y_{max}(\lambda-t)+2} (4)$	(10)	1770	
Modified Logistic	$Y(t) = \frac{Y_{max}}{1 + e^{\left\{ \left[\frac{4\mu_{max}}{Y_{max}} (\lambda - t) \right] + 2 \right\}}} (4)$	(11)	Pererva et al., 2020	
Cone	$Y(t) = \frac{Y_{max}}{1 + kt^{-v}}$	(12)	Zahan et al.,	
Transfer function	$Y(t) = Y_{max} \left\{ 1 - e^{\left[\frac{\mu_{max(\lambda - t)}}{Y_{max}}\right]} \right\}$ $Y(t) = Y_{max} \left(1 - e^{-kt^n} \right)$		2018	
Avrami	$Y(t) = Y_{max} \left(1 - e^{-kt^n} \right)$	(14)	Shirzad & Viney, 2023	
Modified Avrami	$Y(t) = Y_{max} \left(1 - e^{-kt \left[\frac{1}{e^{\frac{1-n}{n}} \left(\frac{\mu_{max} \lambda}{Y_{max}} + 1 \right) \right]}{n} \right)$	(15)	Calculation based on Zwietering et al., 1990	

Where, Y(t) is the Biochemical Methane Potential (NmL CH₄ g⁻¹ VS), Y_{max} is the maximum Biochemical Methane Potential (NmL CH₄ g⁻¹ VS), μ_{max} is the maximum Biochemical Methane Potential rate (NmL CH₄ g⁻¹ VS d⁻¹), λ the lag phase (d), e exp (1), t incubation time (days), k kinetic constant (d⁻¹), Km is the time constant at half of Y_{max} (d), v shape coefficient, a and b are model coefficients.

The kinetics were evaluated by assessing how close the predicted data were to experimental data through two statistical indicators or parameters: the root mean square error (RMSE) and the coefficient of determination (R^2) (Kambezidis, 2012).

3. RESULTS AND DISCUSSION

3.1 Substrate and Inoculum characterization

Having applied the corresponding gravimetric methods (APHA, 2005), the characterization of substrates and inocula was obtained. The analytical results are shown in Table 2.

Sample	Filter cake	Vinasse	Inoculum 1	Inoculum 2
% TS	21.26	14.05	31.29	5.14
% VS _{DW}	42.53	69.08	29.11	59.07
% VS _{ww}	9.04	9.71	9.12	3.04
% Moisture	78.74	85.95	68.71	94.86
% Ash	57.47	30.92	70.89	40.93

Table 2. Analytical characterization of substrates and inocula

3.2 Kinetic study

The results of the anaerobic digestion in terms of maximum accumulative biomethane in each bioreactor are shown in Table 3. Vinasse showed the highest accumulative biomethane with Inoculum 1 and 2. A different result was observed from the mixture of vinasse and filter cake in Inoculum 1 and 2, Inoculum 1 showing the best results.

Experiment	T (*C)	Inoculum	Substrate	Maximum accumulative biomethane (NmL)
A	37	I1	V	1 466.7
В			V _{73%} - F _{27%}	832.8
С	52.5	I2	V	473.6
D			V _{73%} -F _{27%}	77.1

Table 3. Maximum accumulative biomethane according to conditions used

Inoculum I1 and I2 are from the same abattoir wastewater treatment plant but sampled at different times

Results of the daily biomethane production can be observed in figure 2. A general comparison of experiments A and B with C and D demonstrates a faster activity of thermophilic microorganisms compared to the mesophilic ones, as the maximum daily biomethane production in the former occurred on day 1, and in the latter case (mesophilic range) this started between days 1 and 2.

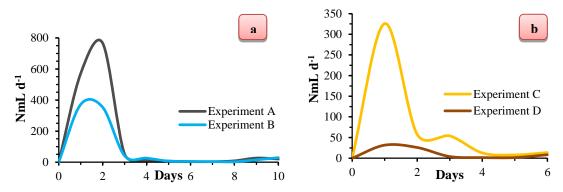


Figure 2. Daily production of biomethane: (a)Mesophilic range and (b) Thermophilic range

The 12 h difference in daily biomethane production in the thermophilic range suggests that by raising the temperature, the favoring of hydrolysis is linked to increased bacterial growth (Campos & Flotats, 2004). Nevertheless, the sudden decrease in the biomethane production indicates a clear inhibition in the methanogenesis stage.

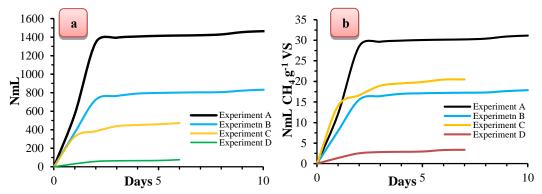
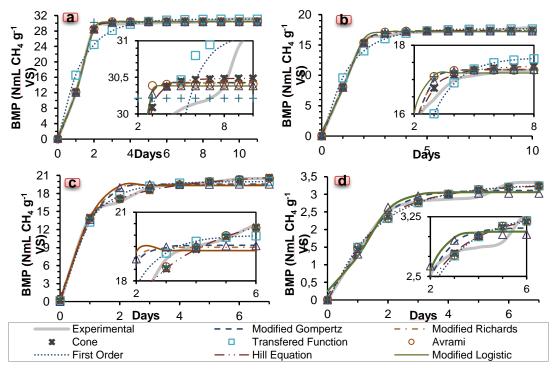



Figure 3. (a) Accumulative biomethane registered. (b) Biochemical Methane Potential (BMP)

Figure 4. Comparison of kinetics and fitted mathematical models versus the observed values: (a) Experiment A, (b) Experiment B, (c) Experiment C and (d) Experiment D

Loyo-Inclán et al. / Centro Azúcar Vol 52, 2025 (e1121)

The high bacterial growth rate accelerates the decomposition of the organic matter, in which ammonia is obtained as a byproduct (acidogenesis). The increase in its concentration leads to the alkalinization of the medium, a phenomenon reported by Pandey & Soupir (2012), if the pH reaches 7.6 at a NH₃-N concentration between 560 and 568 mg/L, biomethanogenesis is reduced by 50% (Gebreeyessus & Jenicek, 2016). The daily biomethane production, from highest to lowest, was achieved in Experiment A (766.65 NmL d⁻¹), followed by Experiment B (371.25 NmL d⁻¹), then Experiment C (325.95 NmL d⁻¹) and finally Experiment D with the lowest daily production of 31.75 NmL d⁻¹.

However, the results in figure 3a indicate that in terms of accumulated biomethane, a higher production was obtained in Experiments A and B, both under mesophilic conditions. Furthermore, in the case of the substrate, vinasse exhibits a higher biomethane production compared to vinasse filter cake mixture (table 2). This behavior is related to substrate composition (López et al., 2017); with vinasse, there is no presence of lignocellulosic material, which implies a lower requirement of hydrolytic bacteria (first stage of anaerobic digestion). The opposite is found with filter cake.

Figure 3b shows the Biochemical Methane Potential (BMP) or the potential biomethane produced per gram of organic matter (volatile solid), expressed as NmL CH₄ g⁻¹ VS. These results are congruent with the accumulative biomethane and daily biomethane figures. The highest amount of BMP, at the start of the asymptotic behavior observed in figure 4, was produced on day 3 for all the experiments. On that day, the BMPs were 24.64 NmL CH₄ g⁻¹ VS (Experiment A), 16.43 NmL CH₄ g⁻¹ VS (Experiment B), 18.94 NmL CH₄ g⁻¹ VS (Experiment C) and finally 2.73 NmL CH₄ g⁻¹ VS for Experiment D. The adjustment behavior of the mathematical models, whose parameters were obtained using SOLVER in MS-Excel, is presented in figure 4. The purpose is to find those models that are closest to experimental data. In order to make it easier to observe the differences between results, in table 4 kinetic fitting constants and statistical parameters are included. In general, in the graphs of figure 4, two types of behavior are observed in the 4 case studies: higher production (Experiment A and B) and lower production for Experiments C and D. In the case of the higher production scenario, the equations that presented a Coefficient of Determination ≥0.9971 were Hill, Modified Gompertz, Modified Richards and Modified Schnute, of which the first two listed stand out for presenting the lowest average distance from the experimental data with an average RMSE of 0.3042 and 0.3611, respectively.

Table 4. Comparison of parameters of the different mathematical models

Eq. Unit	Unita	Experiments				E a	Unita	Experiments			
	Units	A	В	C	D	Eq. Units	A	В	C	D	
on	Y_{max}	30.4890	17.4140	22.9170	3.4040	ied Schnu	Y_{max}	24.6000	18.5150	22.4000	3.4320
	Km	1.1000	1.0530	0.6090	1.2140		b	-0.4860	0.1310	0.2500	0.2300
	В	4.3030	3.0880	0.9040	1.6750		λ	0.5330	0.3440	0.2560	0.3980
	R^2	0.9982	0.9983	0.9986	0.9894		μ_{max}	25.9560	12.2670	20.2030	2.1660
Hill	RMSE	0.3955	0.2228	0.2427	0.1103		R^2	0.9978	0.9971	0.9767	0.9729
	Y_{max}	ax 30.4290 17.2920 19.5520 3.1120	3.1120	M	RMSE	0.4415	0.2864	0.9894	0.1772		
ied	Λ	0.5840	0.3330	0.0840	0.1130		Y_{max}	31.0720	17.6390	20.0010	3.2840
Modified Gompertz	μ_{max}	29.1810	11.9890	15.4690	1.4890	fer on	λ	0.0420	0.0260	-0.0070	0.0090
M _C	R^2	0.9979	0.9971	0.9787	0.9795	Transfer	μ_{max}	24.6800	14.1090	21.5200	2.0110
	RMSE	0.4317	0.2905	0.9660	0.1564		R^2	0.9611	0.9822	0.9925	0.9856
	Y_{max}	30.3830	17.1950	19.3200	3.0610		RMSE	1.8464	0.7130	0.5620	0.1286
ed	Λ	0.5270	0.3640	0.3860	0.2020	Avrami	Y_{max}	30.4040	17.2710	21.0440	3.2670
Modified Logistic	μ_{max}	25.2830	12.0860	23.3710	1.5530		K	0.5090	0.6250	1.0770	0.6060
I —	R^2	0.9975	0.9943	0.9698	0.9687		R^2	0.9977	0.9965	0.9987	0.9856
	RMSE	0.4938	0.4395	1.1315	0.1969		RMSE	0.4491	0.3170	0.2503	0.1286
char	Y_{max}	30.4230	17.2930	19.4655	3.1340	Modified Avrami	Y_{max}	30.2140	17.2710	21.0440	3.2670
	Λ	0.5670	0.3270	0.1800	0.0010		K	0.5130	0.6250	1.0770	0.6060
	μ_{max}	8.1860	0.4230	0.1259	0.0170		λ	2.0290	0.5590	0.8050	0.4260
ied	V	0.1280	0.0130	0.0026	0.0040		μ_{max}	30.0120	10.4200	16.1080	1.3220
 -	R^2	0.9979	0.9971	0.9767	0.9805		R^2	0.9947	0.9965	0.9987	0.9856
M _C	RMSE	0.4328	0.2914	0.9902	0.1608		RMSE	0.6798	0.3170	0.2503	0.1286
Cone	Y_{max}	30.4890	17.4140	22.8490	3.4040	First Order	Y_{max}	31.0900	17.6480	19.9940	3.2870
	K	4.3030	3.0880	0.9140	1.6750		K	0.7740	0.7860	1.0840	0.6080
	Λ	0.9090	0.9490	1.6420	0.8240		R^2	0.9609	0.9822	0.9925	0.9856
	R^2	0.9938	0.9930	0.9860	0.9632		RMSE	1.8726	0.7218	0.5645	0.1287
	RMSE	0.3955	0.2228	0.2438	0.1103						'

With respect to the lowest production, 3 of the 4 models previously listed (Modified Gompertz, Modified Richards and Modified Schnute) present the "worst" fits with an $R^2 \leq 0.9805$, except for Hill which together with Avrami, Modified Avrami and Transfer Function, are the ones that best describe the observed behavior of BMP in the range of $R^2 \geq 0.9925$ in Experiment C and $R^2 \geq 0.9858$ for Experiment D. The Hill equation presented the lowest average RMSE of 0.1764, followed by Modified Avrami with an average value of 0.1895.

Table 5 presents values reported in the literature. The study reveals that the Y_{max} values obtained are relatively low, even though the μ_{max} values fall within range. The inhibition in biomethane production is due to the use of fast degrading substrates, resulting in high concentrations of ammonia and the accumulation of intermediaries of volatile fatty acids (VFAs) that result in a change of the optimal pH for methanogenesis (Marin et al., 2016; Yono et al., 2014). Therefore, its control and adjustment during anaerobic digestion is recommended.

Days of Y_{max} μ_{max} Reference Inoculum Substrate NmL CH₄ g⁻¹ VS $NmL CH_4 g^{-1} VS d^{-1}$ production Digested Experiment 30.4290 3 Vinasse 29.1810 sludge A

108.5

354.8

216.18

2.29

13.86

28.07

50

30

Table 5. Comparison of parameters obtained with Modified Gompertz equation in the literature.

Chicken litter

Yoghurt whey

Vinasse

4. CONCLUSIONS

Wastewater

Activated

sludges

Zahan et al.,

2018

Caillet et al.,

2019

The variation in biomethane production of mesophilic and thermophilic organisms was studied, with two different substrates, with an I/S ratio of 1. Thermophilic organisms exhibit a higher growth rate than their mesophilic counterparts, however the rapid accumulation of byproducts from substrate degradation inhibits their biomethane production by 79.52% on average. In the case of substrates, a higher BMP was obtained in the experiments containing only vinasse as a substrate in relation to the filter cake vinasse. Filter cake needs to be pretreated in order to break the lignin layer to enhance the hydrolysis step. Production time was 3 days, which would reduce production costs of converting raw materials to biomethane. Information was generated as a resource to contribute to the elimination of the pollution impact from vinasse and filter cake, as well as the bioenergetic potential through their biomethane transformation.

From the equations used, it can be established that Gompertz Modified and Hill presented the best approaches; the first one is the most widely used in the literature due to the calculation of three kinetic parameters instead of one. The use of more complex equations than the ones listed above would not be recommended because the R^2 values vary at the third decimal place. Their use would be justified if the purpose was to search for a specific constant.

ACKNOWLEDGMENTS

The support of the companies that donated the digested sludge (Obradores de Medellín slaughterhouse, in Medellín, Veracruz, Mexico), the filter cake (Modelo sugar mill, in Cardel, Veracruz, Mexico) and the vinasse (La Gloria sugar mill, in Úrsulo Galván, Veracruz, Mexico) used in this work is appreciated, as is the personal financial support of the members of the *Academic Body of Science and Engineering in projects on Health, Environment and Energy with a Humanist approach CISAEH*.

REFERENCES

Angelidaki, I. & Ahring, B. (1994). Anaerobic thermophilic digestion of manure at different ammonia loads: Effect of temperature. *Water Research*, 28(3), 727–731. https://doi.org/10.1016/0043-1354(94)90153-8

APHA. (2005). Standard Methods for the Examination of Water and Wastewater. 21st ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.

- Caillet, H., Lebon, E., Akinlabi, E., Madyira, D., & Adelard, L. (2019). Influence of inoculum to substrate ratio on methane production in Biochemical Methane Potential (BMP) tests of sugarcane distillery waste water. *Procedia Manufacturing*, 35, 259–264. https://doi.org/10.1016/j.promfg.2019.05.037
- Campos, E., & Flotats, X. (2004). Procesos biológicos: La digestión anaerobia y el compostaje. In: X. Elias Castells (Ed.), *Tratamiento y valorización energética de residuos*, 618-1206.
- Desair, M., & Madamwar, D. (1994). Anaerobic Digestion of Cheese Whey, Poultry Waste and Cattle Dung A Study of the Use of Mixture of Adsorbents and/or Surfactants to Improve Digester Performance. *Energy and Environment*, *5*(4), 379-385. https://doi.org/10.1177/0958305X9400500406
- El Bari, H., & Habchi, S. (2024). Enhancing biogas production from vinasse through optimizing hydraulic retention time and added load using the response surface methodology. *Heliyon 10*, e38967. https://doi.org/10.1016/j.heliyon.2024.e38967
- Filer, J., Ding, H. H., & Chang, S. (2019). Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research. *Water*, 11(5), 921-949. https://doi.org/10.3390/w11050921
- Gebreeyessus, G., & Jenicek, P. (2016). Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review. *Bioengineering*, *3*(2), 15. https://doi.org/10.3390/bioengineering3020015
- Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Buffière, P., Carballa, M., De Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, L., Frigon, J-C., Fruteau de Laclos, H., Ghasimi, D. S. M., Hack, G., Hartel, M., Heerenklage, J., Horvath, I.S., Jenicek, P., Krautwald, J., Lizasoain, J., Liu, J., Mosberger, L., Nistor, M., Oechsner, H., Oliveira, J.V., Paterson, M., Pauss, A., Pommier, S., Porqueddu, I., Raposo, F., Ribeiro, T., Pfund, F.R., Strömberg, S., Torrijos, M., van Eekert, M., van Lier, J., Wedwitschka, H., & Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science Technology, 74(11), 2515–2522. https://doi.org/10.2166/wst.2016.336
- Janke, L., Leite, A.F., Nikolausz, M., Radetski, C.M., Nelles, M., & Stinner, W. (2016). Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse. Waste Management, 48, 199–208. https://doi.org/10.1016/j.wasman.2015.11.007
- Kambezidis, H.D. (2012). 3.02 The Solar Resource. *Comprehensive Renewable Energy*, 3, 27-84. https://doi.org/10.1016/B978-0-08-087872-0.00302-4
- Kardos, L., Juhász, Á., Palkó, G., Olah, J., Barkács, K., & Záray, G. (2011). Comparing of mesophilic and thermophilic anaerobic fermented sewage sludge based on chemical and biochemical tests. *Applied Ecology and Environmental Research*, *9*(3), 293–
 - 302. https://ui.adsabs.harvard.edu/link_gateway/2011ApEER...9..293K/doi:10.1566 6/aeer/0903 293302
- López, L.M., Pereda, I., & Romero, O. (2017). Anaerobic co-digestion of sugarcane press mud with vinasse on methane yield. *Waste Management*, 68, 139–145. https://doi.org/10.1016/j.wasman.2017.07.016
- Marin, J.D., Salazar, L., Castro, L., & Escalante, H. (2016). Anaerobic co-digestion of

- vinasse and chicken manure: alternative for Colombian agrowaste management. *Revista Colombiana de Biotecnología*, 18(2), 6-12 https://doi.org/10.15446/rev.colomb.biote.v18n2.53853
- Montiel, A., Montalvo, N., García, LE., Sandoval, LC., Bautista, H., & Fernández, G. (2022). Post-Industrial Use of Sugarcane Ethanol Vinasse: A Systematic Review. *Sustainability*, *14*(18), 11635. https://doi.org/10.3390/su141811635
- Moset, V., Al-zohairi, N., & Møller, H.B. (2015). The impact of inoculum source, inoculum to substrate ratio and sample preservation on methane potential from different substrates. *Biomass and Bioenergy*, *83*, 474–482. https://doi.org/10.1016/j.biombioe.2015.10.018
- Nadaleti, WC., & Lourenço, VA. (2021). A mathematical, economic and energetic appraisal of biomethane and biohydrogen production from Brazilian ethanol plants' waste: Towards a circular and renewable energy development. *International Journal of Hydrogen Energy*, 46(54), 27268-27281. https://doi.org/10.1016/j.ijhydene.2021.05.214
- Pandey, P.K., & Soupir, M.L. (2012). Impacts of temperatures on biogas production in dairy manure anaerobic digestion. *International Journal of Engineering and Technology*, 4(5), 629-631. https://doi.org/10.7763/IJET.2012.V4.448
- Parsaee, M., Deh-Kiani, M.K., & Karimi, K. (2019). A review of biogas production from sugarcane vinasse. *Biomass and Bioenergy*, 122, 117-125. https://doi.org/10.1016/j.biombioe.2019.01.034
- Pererva, Y., Miller, C.D., & Sims, R.C. (2020). Existing Empirical Kinetic Models in Biochemical Methane Potential (BMP) Testing, Their Selection and Numerical Solution. *Water*, *12*(6), 1831, 1-16. https://doi.org/10.3390/w12061831
- Raposo, F., Banks, C. J., Siegert, I., Heaven, S., & Borja, R. (2006). Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. *Process Biochemistry*, 41(6), 1444–1450. https://doi.org/10.1016/j.procbio.2006.01.012
- Rodriguez, RP., Manochio, C., & Moraes, BD. (2018). Energy Integration of Biogas Production in an Integrated 1G2G Sugarcane Biorefinery: Modeling and Simulation. *BioEnergy Research*, *12*, 158-167. https://doi.org/10.1007/s12155-018-9950-z
- Shirzad, K., & Viney, C. (2023). A critical review on applications of the Avrami equation beyond materials science. *Journal of the Royal Society Interface*, 20, 20230242. https://doi.org/10.1098/rsif.2023.0242
- Tena, M., Buller, LS., Sganzerla, WG., Berni, M., Forster, T., Solera, R., & Pérez. (2022). Techno-economic evaluation of bioenergy production from anaerobic digestion of by-products from ethanol flex plants. *Fuel*, *309*(1), 122171. https://doi.org/10.1016/j.fuel.2021.122171
- Yadvika., Santosh., Sreekrishnan, T.R., Kohli, S., & Rana, V. (2004). Enhancement of biogas production from solid substrates using different techniques A review. *Bioresource Technology*, 95, 1-10. https://doi.org/10.1016/j.biortech.2004.02.010
- Yono, B., Syaichurrozi, I., & Sumardiono, S. (2014). Kinetic Model of Biogas Yield Production from Vinasse at Various Initial pH: Comparison between Modified Gompertz Model and First Order Kinetic Model. *Research Journal of Applied Sciences*, *Engineering and Technology*, 7(13), 2798-2805.

https://doi.org/10.19026/rjaset.7.602

- Zahan, Z., Othman, M.Z., & Muster, T.H. (2018). Anaerobic digestion/co-digestion kinetic potentials of different agro-industrial wastes: A comparative batch study for C/N optimisation. *Waste Management*. 71, 663–674. https://doi.org/10.1016/j.wasman.2017.08.014
- Zwietering, MH., Jongenburger, I., Rombouts, FM., & Riet, KV. (1990). Modelling of the bacterial growth curve. *Applied Environmental Microbiology*, *56*, 1875-1881. https://doi.org/0099-2240/90/061875-07\$02.00/0

CONFLICT OF INTEREST

The authors declare no conflict of interest concerning the publication of this manuscript.

AUTHORS' CONTRIBUTIONS

- B BCh E. Carlos Loyo-Inclán. Research, writing revision and editing.
- M Eng. Anilú Miranda-Medina. Conceptualization, writing-revision and editing.
- B BCh E. Sheila Paulina Parra-Bartolo. Research.
- M Sc. Dulce María Barradas-Dermitz. Conceptualization, writing-revision and editing.
- B BCh E. Marisol Bravo-Figarola. Research.
- M Sc. Patricia Margaret Hayward-Jones. Writing -Revision and editing.