PERFORMANCE PREDICTION OF OUTPUT PRESSURE OF A STEAM TURBINE COUPLED WITH AN AIR-COOLED STEAM CONDENSER
Keywords:
Pressure output, ambient temperature, heat transfer, wind speedAbstract
For an air-cooled vapor condenser (ACC), environmental wind can cause a large reduction of the flow in the axial fans mainly near the windward side of the air-cooled platform due to cross-flow effects, resulting in a reduction of heat transfer. This leads to an increase in the turbine’s counter-pressure. This paper proposes a new method to evaluate the effect of wind on the output pressure of the turbine, as well as the effect of the combination of ambient temperature with the direct action of the wind. Finally, the results obtained are given in graph forms and a group of equations are proposed that allow attaining the output pressure of the turbine once ambient temperatures and wind speed are known. These expressions correlate in all cases with a mean error of 11.27% in 89.12% of the experimental data available, and they are considered, therefore, sufficiently precise for their use in thermal engineering.